

Ежегодная международная научно-практическая конференция

«РусКрипто'2023»

О свойстве безопасности RUP для схем аутентифицированного шифрования

Бабуева А. А., ведущий инженер-аналитик, КриптоПро

Алексеев Е. К., к.ф.-м.н., начальник отдела криптографических исследований, КриптоПро Ахметзянова Л. Р., зам. начальника отдела криптографических исследований, КриптоПро Божко А. А., инженер-аналитик, КриптоПро

Схемы аутентифицированного шифрования

```
Enc(K,P) \rightarrow (IV,C): алгоритм аутентифицированного шифрования
```

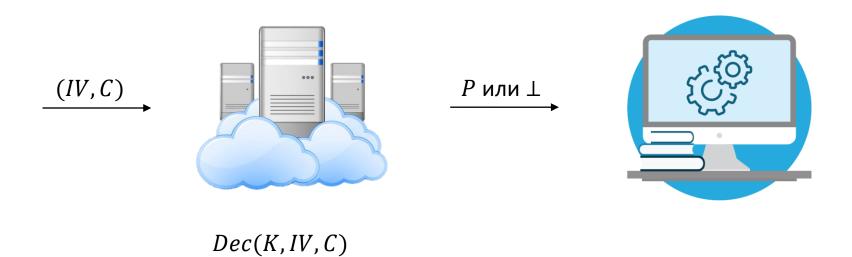
 $Dec(K, IV, C) \rightarrow P$ или \bot : детерминированный алгоритм расшифрования с проверкой целостности

K — ключ

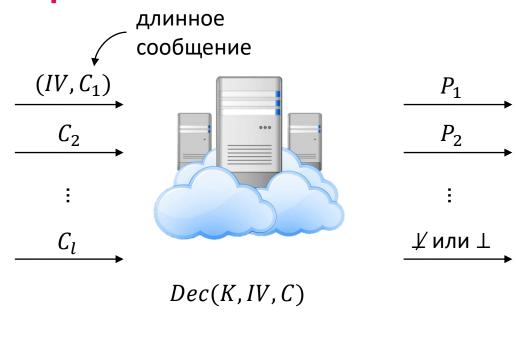
IV – вектор инициализации (случайный или уникальный)

P — открытый текст

C — шифртекст


Стандартные свойства безопасности

при атаке с выбором шифртекста



На практике

прикладная система

На практике

поточная обработка

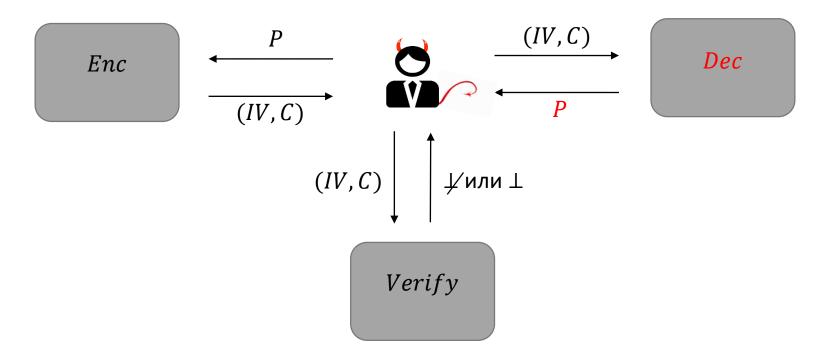
прикладная система

прикладная система получает результат расшифрования даже некорректных шифртекстов

он может стать доступным нарушителю

На практике

Нарушитель получает результат расшифрования некорректных шифртекстов:

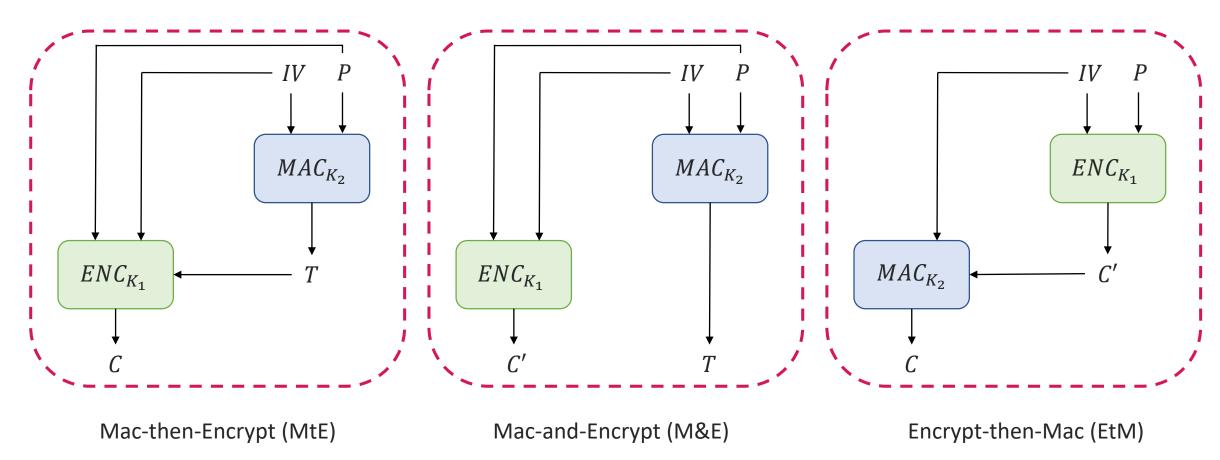

конфиденциальность

целостность

Модель INT-RUP

INTegrity under Release of Unverified Plaintext

Задача нарушителя: предъявить нетривиальную подделку (IV^*, C^*)


Далее в докладе

- □ достаточные условия обеспечения стойкости в модели INT-RUP для классических схем аутентифицированного шифрования на основе режима гаммирования
- анализ стойкости некоторых стандартизированных механизмов аутентифицированного шифрования

Целевые схемы

шифрование в режиме гаммирования: $ENC_K(IV, P) = \Gamma(K, IV) \oplus P$

Свойство MRAE-int

Misuse-Resistant Authenticated Encryption integrity

IV может повторяться

IV может повторяться

Задача нарушителя: предъявить нетривиальную подделку (IV^*, C^*)

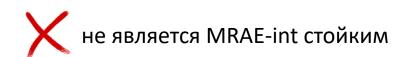
Свойство MRAE-int: достаточное условие для INT-RUP

Misuse-Resistant Authenticated Encryption integrity

IV может повторяться

IV может повторяться

Задача нарушителя: предъявить нетривиальную подделку (IV^*, C^*)


Для $AE \in \{MtE, M\&E, EtM\}$ с ENC в режиме гаммирования: $MRAE\text{-}int \Rightarrow INT\text{-}RUP$

Свойство MRAE-int: очень сильное условие

Пример (Mac-and-Encrypt): $T = MAC_{K=(K_2,K_3)}(IV,P) = H(K_2,P) \oplus F(K_3,IV)$ $C' = ENC_{K_1}(IV,P) = \Gamma(K_1,IV) \oplus P$

Схема МАС Вегмана-Картера:

H — универсальная хэш-функция, F — псевдослучайная функция

потенциально является INT-RUP стойким

Свойство MRAE-int: очень сильное условие

Пример (Mac-and-Encrypt):
$$T = MAC_{K=(K_2,K_3)}(IV,P) = H(K_2,P) \oplus F(K_3,IV)$$

$$C' = ENC_{K_1}(IV,P) = \Gamma(K_1,IV) \oplus P$$

Атака в модели MRAE-int:

```
1) C_1'\|T_1\leftarrow Enc(IV_1,P_1) // T_1=H(K_2,P_1)\oplus F(K_3,IV_1) повтор IV при 2) C_2'\|T_2\leftarrow Enc(IV_2,P_1) // T_2=H(K_2,P_1)\oplus F(K_3,IV_2) шифровании 3) C_3'\|T_3\leftarrow Enc(IV_1,P_2) // T_3=H(K_2,P_2)\oplus F(K_3,IV_1) 4) T_4\leftarrow T_1\oplus T_2\oplus T_3 // T_4=H(K_2,P_2)\oplus F(K_3,IV_2) 5) C_4'\leftarrow P_2\oplus (P_1\oplus C_2') 6) Вернуть подделку (IV_2,C_4'\|T_4)
```

Свойство MRAE-int: очень сильное условие

Пример (Mac-and-Encrypt):
$$T = MAC_{K=(K_2,K_3)}(IV,P) = H(K_2,P) \oplus F(K_3,IV) + C' = ENC_{K_1}(IV,P) = \Gamma(K_1,IV) \oplus P$$

Атака в модели MRAE-int:

1)
$$C_1' \| T_1 \leftarrow Enc(IV_1, P_1) \quad // T_1 = H(K_2, P_1) \oplus F(K_3, IV_1)$$

2) $C_2' \| T_2 \leftarrow Enc(IV_2, P_1) \quad // T_2 = H(K_2, P_1) \oplus F(K_3, IV_2)$
3) $C_3' \| T_3 \leftarrow Enc(IV_1, P_2) \quad // T_3 = H(K_2, P_2) \oplus F(K_3, IV_1)$
4) $T_4 \leftarrow T_1 \oplus T_2 \oplus T_3 \quad // T_4 = H(K_2, P_2) \oplus F(K_3, IV_2)$
5) $C_4' \leftarrow P_2 \oplus (P_1 \oplus C_2')$
6) Вернуть подделку $(IV_2, C_4' \| T_4)$

схема МАС не является стойкой при повторе IV

Ослабляем условия...

Модель nUF-CMA (nonce-based UnForgeability under Chosen Message Attack) для схемы MAC

Задача нарушителя: предъявить нетривиальную подделку (IV^*, P^*, T^*)

Как следствие...

```
Пример (Mac-and-Encrypt): T = MAC_{K=(K_2,K_3)}(IV,P) = H(K_2,P) \oplus F(K_3,IV) C' = ENC_{K_1}(IV,P) = \Gamma(K_1,IV) \oplus P
```


Для $AE \in \{MtE, M\&E, EtM\}$ с ENC в режиме гаммирования : $INT\text{-}RUP \biguplus MRAE\text{-}int$

А что со схемами ГОСТ?

Encrypt-then-Mac

потенциально стойкий в INT-RUP, т.к. потенциально стойкий в MRAE-int, см. [1]

CMS

Encrypted/EnvelopedData

Mac-then-Encrypt

построена атака в INT-RUP

[1] A. Kurochkin, D. Fomin «MGM Beyond the Birthday Bound», CTCrypt'19

Шифрование в CMS

```
CMS.Enc(K = (K_{enc}, K_{mac}), P):
```

- 1. $IV \leftarrow_U \{0,1\}^{n/2}$
- $2. T \leftarrow OMAC(K_{mac}, P)$
- 3. $C \leftarrow CTR\text{-}ACPKM(l, K_{enc}, IV, P||T)$
- 4. return (*IV*, *C*)

```
CMS.Dec(K = (K_{enc}, K_{mac}), IV, C):
```

- 1. $P || T \leftarrow CTR ACPKM(l, K_{enc}, IV, C)$
- 2. $T' \leftarrow OMAC(K_{mac}, P)$
- 3. if (T' = T): return P
- 4. return *false*

Шифрование в CMS (в условиях RUP)

```
CMS.Enc(K = (K_{enc}, K_{mac}), P):
```

- 1. $IV \leftarrow_{II} \{0,1\}^{n/2}$
- $2. T \leftarrow OMAC(K_{mac}, P)$
- 3. $C \leftarrow CTR\text{-}ACPKM(l, K_{enc}, IV, P||T)$
- 4. return (*IV*, *C*)

```
CMS.Dec(K = (K_{enc}, K_{mac}), IV, C):
```

- 1. $P || T \leftarrow CTR ACPKM(l, K_{enc}, IV, C)$
- 2. return *P*

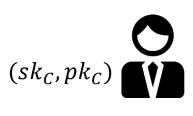
$$CMS.Verify(K = (K_{enc}, K_{mac}), IV, C)$$
:

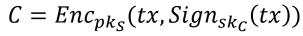
- 1. $P||T \leftarrow CTR\text{-}ACPKM(l, K_{enc}, IV, C)$
- $2. T' \leftarrow OMAC(K_{mac}, P)$
- 3. if (T' = T): return true
- 4. return *false*

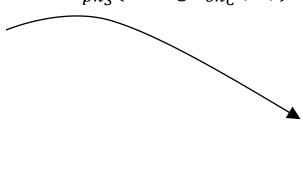
Атака на CMS

- 1. Делает запрос на шифрование $Enc(P) \rightarrow (IV, C)$
- 2. Делает запрос на расшифрование $Dec(IV, C_1) o P_1$ и вычисляет $\Gamma = C_1 \bigoplus P_1$
- 3. Делает запрос на расшифрование $Dec(IV^*, C_2) o P_2$ и вычисляет $\Gamma^* = C_2 \bigoplus P_2$
- 4. Вычисляет $C^* = \Gamma \oplus C \oplus \Gamma^*$
- 5. Предъявляет (IV^*, C^*) в качестве подделки

Атака на CMS

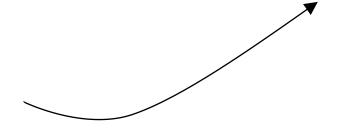



- 1. Делает запрос на шифрование $Enc(P) \rightarrow (IV, C)$
- 2. Делает запрос на расшифрование $Dec(IV, C_1) o P_1$ и вычисляет $\Gamma = C_1 \bigoplus P_1$
- 3. Делает запрос на расшифрование $Dec(IV^*, C_2) o P_2$ и вычисляет $\Gamma^* = C_2 \oplus P_2$
- 4. Вычисляет $C^* = \Gamma \oplus C \oplus \Gamma^*$
- 5. Предъявляет (IV^*, C^*) в качестве подделки

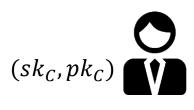

$$C \oplus \Gamma = P \parallel T$$

$$C^* = (P \parallel T) \oplus \Gamma^*$$

Проблема: можно «перешифровать» $(P \parallel T)$ с помощью другого IV, имитовставка не зависит от IV

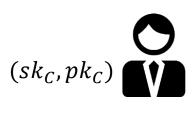


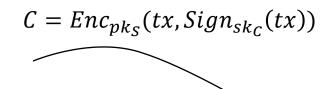
сервер исполнения транзакций

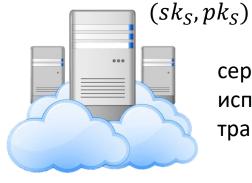


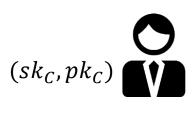
- 1) $tx, \sigma \leftarrow Dec_{sk_S}(C)$
- 2) проверка подписи σ
- 3) проверка tx на уникальность по hash(C)
- 4) выполнение транзакции tx

защита от


атак повтора




- 1) $tx, \sigma \leftarrow Dec_{sk_S}(C)$
- 2) проверка подписи σ
- 3) проверка tx на уникальность по hash(C)
- 4) выполнение транзакции tx


1. tx = «перевести 100 рублей клиенту В»

2-3. навязывает длинные некорректные сообщения и получает результаты расшифрования

сервер исполнения транзакций

- 1) $tx, \sigma \leftarrow Dec_{sk_S}(C)$
- 2) проверка подписи σ
- 3) проверка tx на уникальность по hash(C)
- 4) выполнение транзакции tx

сервер исполнения транзакций

4. формирует C^* , корректный для tx

- 1) $tx, \sigma \leftarrow Dec_{sk_S}(C)$
- 2) проверка подписи σ
- 3) проверка tx на уникальность по hash(C)
- 4) выполнение транзакции tx

Итог: транзакция tx выполняется дважды

проверка

успешная, т.к. $C \neq C^*$

Что делать?

Решение. Организационно-технические меры

Требования по использованию механизма в случае поточной обработки данных:

- 1) получаемые в процессе расшифрования открытые данные не должны обрабатываться или храниться в месте, доступном нарушителю, до момента окончания процесса обработки
- 2) в случае завершения процесса обработки с ошибкой необходимо удалить все полученные открытые данные безопасным образом

В будущем – новая версия CMS

- 1) на основе МGМ
- 2) на основе текущего стандарта

CMS.
$$Enc(K = (K_{enc}, K_{mac}), P)$$
:

- 1. $IV \leftarrow_{II} \{0,1\}^{n/2}$
- $2. T \leftarrow OMAC(K_{mac}, IV || P)$
- 3. $C \leftarrow CTR\text{-}ACPKM(l, K_{enc}, IV, P||T)$
- 4. return (*IV*, *C*)

$$CMS.Dec(K = (K_{enc}, K_{mac}), IV, C)$$
:

- 1. $P||T \leftarrow CTR\text{-}ACPKM(l, K_{enc}, IV, C)$
- $2. T' \leftarrow OMAC(K_{mac}, IV || P)$
- 3. if (T' = T): return P
- 4. return *false*

стойкость в INT-RUP обеспечивается за счет неподделываемости OMAC в модели nUF-CMA

Контактная информация:

babueva@cryptopro.ru